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Abstract. Nuclear structure functions at small x and small or moderate Q2 are studied using the relation
with diffraction on nucleons which arises from Gribov’s reggeon calculus. A reasonable description of the
experimental data is obtained with no fitted parameters. A comparison with other models and predictions
for future lepton–ion colliders are provided. Consequences for the reduction of multiplicities in nucleus–
nucleus collisions at energies of RHIC and LHC are examined.

1 Introduction

The study of nuclear structure functions has become a
fashionable subject. Apart from its intrinsic interest, such
analysis has a great impact on the interpretation of re-
sults from heavy ion experiments. At small values of the
Bjorken variable x (<∼ 0.01, shadowing region), the struc-
ture function F2 per nucleon turns out to be smaller in
nuclei than in a free nucleon [1,2]. Several explanations to
this shadowing have been proposed.

On the one hand, some models use the fact that in
the rest frame of the nucleus the incoming photon splits
into a qq̄ pair long before reaching the nucleus, and this qq̄
pair interacts with it with typical hadronic cross sections,
which results in absorption [3–9]. Thus nuclear shadowing
is a consequence of multiple scattering which in turn is
related to diffraction [6,10,11]. This relationship will be
developed in this paper. Equivalently, in a frame in which
the nucleus is moving fast, gluon recombination due to
the overlap of the gluon clouds from different nucleons
reduces the gluon density in the nucleus [12,13]. These
studies have received a great theoretical impulse with the
development of semiclassical ideas in QCD and the ap-
pearance of non-linear equations for evolution in x in this
framework (see [14–17] and references therein; also [18] for
a simple geometrical approach in this framework).

On the other hand, other approaches [19–21] do not ad-
dress the origin of shadowing but only its evolution with
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lnQ2: parton densities inside the nucleus are parameter-
ized at some scale Q2

0 and then evolved using the DGLAP
[22] evolution equations.

The results from different models usually depend on
phenomenological assumptions and their predictions (no-
tably for small values of x which are of the utmost impor-
tance to compute particle production at RHIC and LHC)
turn out to be very different. For example, concerning the
Q2-dependence of shadowing, it can be either constant
[4–9], or die out logarithmically [19–21] or behave as a
higher-twist [12,13].

In this paper we will use the relation of diffraction to
nuclear shadowing which arises from Gribov theory [23],
reggeon calculus [24] and the AGK rules [25]. In this way
we obtain a parameter-free description of nuclear struc-
ture functions in the shadowing region valid for x < 0.01
and Q2 < 10 GeV2, using a model for F2 and F2D [26,
27]. The same strategy has been used in [10,11], but our
extrapolation to smaller x or higher W 2 is more reliable
than that of [10] due to the model employed for the nu-
cleon; besides, our description is valid for small Q2 while
that of [11] applies to Q2 ≥ 4 GeV2. In Sect. 2 the model
will be described. In Sect. 3 numerical results will be pre-
sented together with comparisons with experimental data
and with other models. In Sect. 4 the model will be ap-
plied to calculate the multiplicity reduction factors [28,
29] relevant to compute particle production in heavy ion
collisions at RHIC and LHC. Finally, the last section will
contain our conclusions.

2 Description of the model
We assume that nuclei are made of nucleons in the spirit
of the Glauber model. In order to relate diffraction on
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Fig. 1. Diagram showing diffractive DIS with the correspond-
ing kinematical variables in the infinite momentum frame (left)
and its equivalence in the rest frame of the nucleon (right)
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Fig. 2. Diagram showing the equivalence between diffractive
DIS and two exchanged amplitudes with a cut between the
amplitudes

nucleons with nuclear shadowing, we will follow the pro-
cedure explained in [10]. The γ∗–nucleus cross section can
be expanded in a multiple scattering series containing the
contribution from 1, 2, . . . scatterings:

σA = σ
(1)
A + σ

(2)
A + · · · . (1)

σ
(1)
A is simply equal to Aσnucleon. Let us consider now

the first correction to the non-additivity of cross sections
which comes from the second-order rescattering σ

(2)
A . In

Fig. 1 diffractive DIS is shown in both the infinite mo-
mentum frame and in the rest frame of the nucleon. In
Fig. 2 it becomes clear that the square of such a contribu-
tion is equivalent to a double exchange with a cut between
the exchanged amplitudes, a so-called diffractive cut. To
compute the first contribution to nuclear shadowing σ

(2)
A ,

which comes from these two exchanges, we need its to-
tal contribution to the γ∗–nucleon cross section, which
arises from cutting the two-exchange amplitude in all pos-
sible ways (between the amplitudes and the amplitudes
themselves in all possible manners). For purely imaginary
amplitudes, it can be shown [24,25] that this total con-
tribution is identical to minus the contribution from the
diffractive cut. Thus diffractive DIS is directly related to
the first contribution to nuclear shadowing. The final ex-
pression reads

σ
(2)
A = −4πA(A − 1) (2)

×
∫

d2b T 2
A(b)

∫ M2
max

M2
min

dM2 dσD
γ∗p

dM2dt

∣∣∣∣∣
t=0

F 2
A(tmin),

with TA(b) =
∫ +∞

−∞ dzρA(b, z) the nuclear profile func-
tion normalized to 1,

∫
d2b TA(b) = 1, and M2 the mass

of the diffractively produced system. The usual variables
for diffractive DIS: Q2, x, M2 and t, or xP = x/β, β =

Q2

Q2+M2 , are shown in Fig. 1.
Coherence effects, i.e. the coherence length of the qq̄

fluctuation of the incoming virtual photon, is taken into
account through

FA(tmin) =
∫

d2b J0(b
√−tmin)TA(b), (3)

with tmin = −m2
Nx2

P and mN the nucleon mass. This func-
tion is equal to 1 at x → 0 and decreases with increasing
x due to the loss of coherence for x > xcrit ∼ (mNRA)−1.

Let us briefly examine (2). Here the real part of the
pomeron amplitude, which is small for the value of the
intercept which will be used [27], ∆ = αP(t = 0)−1 = 0.2,
has not been taken into account. Also it has been deduced
under the approximation R2

A � R2
N , so the t-dependence

of the γ∗–nucleon cross section has been neglected.
For A > 20 a nuclear density in the form of a 3-

parameter Fermi distribution with parameters taken from
[30] will be employed to compute both TA(b) and (3). For
2 < A ≤ 20 a Gaussian profile function is used [31]:

TA(b) =
3

2πR2
A

exp
(

− 3b2

2R2
A

)
, RA = 0.82A1/3+0.58 fm,

(4)
but, in order to take into account the t-dependence for
these light nuclei, we make in the computation of the form
factors (3) the substitution

R2
A −→ R2

A + R2
N , RN = 0.8 fm. (5)

Finally, for the deuteron the double rescattering contribu-
tion has the form

σ
(2)
A = −2

∫ tmin

−∞
dt

×
∫ M2

max

M2
min

dM2 dσD
γ∗nucleon

dM2dt

∣∣∣∣∣
t=0

FD(t), (6)

where FD(t) = eat, a = 40 GeV−2.
The lower integration limit in (2) and (6) is M2

min =
4m2

π = 0.08 GeV2, while the upper one is taken from the
condition

xP = x

(
M2 + Q2

Q2

)
≤ xPmax =⇒ M2

max

= Q2
(xPmax

x
− 1

)
, (7)

with xPmax = 0.1; this value was used in [27] motivated
by the fact that the model is only valid for M2 � W 2 or
xP � 1, i.e. a large rapidity gap is required. In our case,
variations of xPmax by a factor 2 do not affect the de-
scription of nuclear shadowing at x < 0.01, but the choice
xPmax = 0.1 is convenient as it guarantees the disappear-
ance of nuclear shadowing at x ∼ 0.1 (see below) as in the
experimental data.



N. Armesto et al.: Nuclear structure functions at small x from inelastic shadowing and diffraction 533

The relation between
dσD

γ∗p
dM2dt

∣∣∣∣
t=0

and xPF
(3)
2D (Q2, xP, β)

is provided by the model [27]

xPF
(3)
2D (Q2, xP, β)

= xP
Q2

4π2αem

∫ 0

−∞
dt

dσD
γ∗p(Q2, xP, β, t)

dxPdt
=⇒
dσD

γ∗p(Q2, xP, β)
dM2dt

∣∣∣∣∣
t=0

=
4π2αemB

Q2(Q2 + M2)
xPF

(3)
2D (Q2, xP, β), (8)

where the usual factorization has been assumed:

dσD
γ∗p(x, Q2, M2, t)

dM2dt
=

dσD
γ∗p(x, Q2, M2)

dM2dt

∣∣∣∣∣
t=0

eBt, (9)

with B = 6 GeV−2 (as in [32], see the discussion there;
this value is slightly smaller than the experimental values
7.2 ± 1.1(stat.)+0.7

−0.9(syst.) GeV−2 [33] at 〈Q2〉 = 8 GeV2

and 6.8 ± 0.9(stat.)+1.2
−1.1(syst.) GeV−2 [34] for photopro-

duction). Note that
dσD

γ∗p(x,Q2,M2)
dM2dt

∣∣∣∣
t=0

can be obtained

directly from σtot. However, the model for diffraction we
are using [27] has mainly been tested after integration in t
(most available data are integrated in t). For this reason,
we use the integrated expression together with the exper-
imental value of B. While this is legitimate at present val-
ues of x, it can lead to an underestimation of shadowing
at very small x, due to the increase of B with energy1.

The model in [27] is based on the dipole picture of the
photon and contains two components. The small-distance
(S) component corresponds to transverse distances r be-
tween the q and the q̄ of the dipole such that r < r0,
and the large-distance (L) component to r > r0, with
r0 = 0.2 fm. In each component a quasi-eikonal iteration
is introduced in order to enforce unitarity. Reggeon and
pomeron exchanges are allowed. For diffraction, a third
component is used, namely a contribution from the triple
interaction of reggeons and pomerons. This model has
been designed to describe the small x < 10−2, small or
moderate Q2 < 10 GeV2 region, and it contains the basic
ingredients which allow one to make a safe extrapolation2

to very small x or high W 2.
1 Nevertheless, the effect is not too large: we have checked

that an increase of B from 6 to 7.2 GeV−2 produces an increase
of shadowing for Pb of at most 10% at x = 10−7. As estimates
indicate an increase <∼50% in B for the smallest x we have
studied, x = 10−7, the increase of shadowing due to this effect
would be at most ∼ 25% for these values of x

2 In order to use the model for larger x, 0.01 < x < 0.1, we
have made some modifications in [27]: there, in (26) βmin in
the normalization denominators has been set to 0, and in (25)
the reggeon–reggeon contribution has been ignored. These two
changes slightly modify the description of diffraction but we
have checked that the agreement with experimental data is as
good as in the original version of the model

Equation (2) corresponds to the case with only two
scatterings. Its extension to include higher-order rescat-
terings is model-dependent. We will use two models: a
Schwimmer unitarization [35] which is obtained from a
summation of fan diagrams with triple pomeron interac-
tions,

σSch
γ∗A = σγ∗nucleon

×
∫

d2b
ATA(b)

1 + (A − 1)f(x, Q2)TA(b)
, (10)

and an eikonal unitarization,

σeik
γ∗A = σγ∗nucleon

∫
d2b

A

2(A − 1)f(x, Q2)
× {

1 − exp
[−2(A − 1)TA(b)f(x, Q2)

]}
, (11)

where we use the relation σγ∗nucleon = 4π2αem
Q2 F2(x, Q2),

valid at small x. Here, F2(x, Q2) is the nucleon structure
function, taken from [27]. Both expressions (10) and (11),
expanded to the first non-trivial order, reproduce the sec-
ond rescattering result (2). Eikonal unitarization will pro-
duce larger shadowing than Schwimmer, as can be ex-
pected by comparing the second non-trivial order in the
expansion of both expressions. Finally,

f(x, Q2) =
4π

σγ∗nucleon

×
∫ M2

max

M2
min

dM2 dσD
γ∗p

dM2dt

∣∣∣∣∣
t=0

F 2
A(tmin), (12)

as required by consistency with (2).
The shadowing in nuclei is usually studied through the

ratios of cross sections per nucleon for different nuclei,
defined as

R(A/B) =
B

A

σγ∗A

σγ∗B
. (13)

In the simplest case of the ratio over the nucleon (equiva-
lent to the proton at small x where the valence contribu-
tion can be neglected), we get

RSch(A/nucleon)

=
∫

d2b
TA(b)

1 + (A − 1)f(x, Q2)TA(b)
, (14)

Reik(A/nucleon) =
∫

d2b
1

2(A − 1)f(x, Q2)
× {

1 − exp
[−2(A − 1)TA(b)f(x, Q2)

]}
. (15)

To calculate shadowing in photoproduction, x is no longer
a relevant kinematical variable. Instead we use the γ∗–
nucleon center of mass energy W 2.

In our framework shadowing can also be studied as a
function of the impact parameter b:

R(A/nucleon)Sch(b) =
1

1 + (A − 1)f(x, Q2)TA(b)
, (16)
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Fig. 3. Results of the model using Schwimmer (solid lines)
and eikonal (dashed lines) unitarization compared with exper-
imental data versus x, for the ratios C/D, Ca/D, Pb/D [36]
and Xe/D [37] (filled circles correspond to the analysis with
hadron requirement and open circles to that with electromag-
netic cuts; see the experimental paper for more details)

R(A/nucleon)eik(b) =
1

2(A − 1)TA(b)f(x, Q2)
× {

1 − exp
[−2(A − 1)TA(b)f(x, Q2)

]}
. (17)

Finally, the region of applicability of our model is the
same as that of the model for diffraction on the nucleon
[27], i.e. small x<∼0.01 and small or moderate Q2<∼10 GeV2,
including photoproduction.

3 Numerical results

In our model and in [27] we work in the small x region and
thus no distinction is made between protons and neutrons.
Although usually joined with straight lines, our results are
computed at the same 〈x〉 and 〈Q2〉 as the experimental
data. For the latter, inner error bars show statistical er-
rors, and outer error bars correspond to statistical and
systematical errors added in quadrature.

In Figs. 3–6 a comparison with the experimental data
at small x from E665 [36,37] and NMC [38–40] is pre-
sented. As expected, eikonal unitarization produces larger
shadowing than Schwimmer. The agreement with the ex-
perimental data is quite reasonable taking into account
that no parameters have been fitted to reproduce the data.
Two comments are in order: First, for C/D and Ca/D in
Fig. 3 which shows the comparison with the E665 data,
shadowing looks overestimated for x ∼ 0.01, while in Fig. 5
which shows the comparison with the NMC data, it looks
underestimated. This corresponds to the known difference
between the results of both experiments for ratios over D,

Fig. 4. Results of the model using Schwimmer (open circles)
and eikonal (open triangles) unitarization compared with ex-
perimental data versus A, for the ratios Be/C, Al/C, Ca/C,
Fe/C, Sn/C and Pb/C [38] at two fixed values of x

Fig. 5. Id. to Fig. 3 but for the ratios He/D, C/D and
Ca/D [39]

while the compatibility is restored [38] when ratios are
computed over C. Second, from Fig. 6 it becomes clear
that the evolution with Q2 in the model is too slow at
x ∼ 0.01, a problem related with the lack of DGLAP evo-
lution in the model [27] (see [10,11,41] for an application
of DGLAP evolution to initial conditions).
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Fig. 6. Results of the model using Schwimmer (solid lines)
and eikonal (dashed lines) unitarization compared with exper-
imental data versus Q2, for the ratio Sn/C [40] at two fixed
values of x

In Fig. 7 a comparison of the results of our model with
those of others is shown, for Q2 = 3 GeV2 (except the re-
sults of [11] which are at Q2 = 4 GeV2). It can be seen
that the results of different models agree within 15% at
x ∼ 0.01 where experimental data exist, while they differ
up to a factor 0.6 at x = 10−5. At this x, our results are the
lowest ones but roughly agree with those of [19] and with
one set of [11], while the results from [21] are the highest
ones, and those of [8,42,43] and the second set of [11] lie
in between. Let us briefly comment on these models: In
[19,21] an initial condition is parameterized at some Q2

0
and then evolved using DGLAP; the initial condition is
fitted from the comparison of the evolved results with ex-
perimental data (see [44] for a comparison between these
two models). Reference [8] is a model which uses a satu-
rating ansatz for the total γ∗–nucleon cross section in the
proton, which is introduced in a Glauber expression for
its extension to the nuclear case. In [11] some parameter-
ization of hard diffraction at Q2

0, which as in the present
work gives nuclear shadowing through Gribov’s reggeon
calculus, is employed; this nuclear shadowing computed
at Q2

0 is used as initial condition for DGLAP evolution.
In [42] a Glauber ansatz provides with the initial condi-
tion for DGLAP evolution. Finally, in [43] a non-linear
equation for small x evolution is numerically solved [45]
and used in the nuclear case. In view of the differences at
small x among different models, a measurement of F2 in
nuclei with ∼ 10% precision would be a sensitive test to
discriminate among them. Lepton–ion colliders [46] could
provide us with such data.

In Fig. 8 our predictions for the ratios D, He, Li, C, Ca,
Sn and Pb over the nucleon for Q2 = 0.5, 2 and 5 GeV2

Fig. 7. Comparison of the results of our model using Schwim-
mer (solid lines) and eikonal (dashed lines) unitarization for
the ratio Pb/nucleon with other models, versus x at fixed
Q2 = 3 GeV2. HKM are the results from [21], Sarcevic from
[42], Bartels from [43], Frankfurt from [11] (at Q2 = 4 GeV2),
Armesto from [8] and EKS98 from [19]

Fig. 8. Results of the model using Schwimmer (solid lines) and
eikonal (dashed lines) unitarization for the ratios D/nucleon,
He/nucleon, Li/nucleon, C/nucleon, Ca/nucleon, Sn/nucleon
and Pb/nucleon versus x at Q2 = 0.5, 2 and 5 GeV2

are given for x > 10−8. Let us notice that our model is de-
signed for the small x region and that no antishadowing
or any other effects relevant for x>∼0.1 have been intro-
duced. The disappearance of shadowing at x ∼ 0.1 is a
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Fig. 9. Results of the model for Q2 = 0 using Schwim-
mer (solid lines) and eikonal (dashed lines) unitarization for
the ratios D/nucleon, He/nucleon, Li/nucleon, C/nucleon,
Ca/nucleon, Sn/nucleon and Pb/nucleon (upper plot), and for
different impact parameters b for the ratios C/nucleon (plot in
the middle) and Pb/nucleon (lower plot), versus W 2

consequence of both the coherence effects in (3) and the
vanishing integration domain in (2); see (7). In Fig. 9 re-
sults in photoproduction for the same ratios as in Fig. 8
are given for W 2 < 105 GeV2, together with predictions
for the evolution of the ratios C and Pb over nucleon with
impact parameter b. Values as low as 0.3 are reached for
central Pb/nucleon. This evolution with centrality is very
important to compute the corresponding evolution of par-
ticle production in nuclear collisions, and could also be
measured in lepton–ion colliders [46].

As a last comment in this section, let us discuss the
twist structure of the model (i.e. its structure in powers
of 1/Q2). In the model of [27] the unitarity corrections
to the L component are all of order 1/Q2. On the con-
trary, in the S component the unitarity corrections are
higher-twist (they can be expanded as a sum of terms, each
one containing an additional factor 1/Q2 as compared to
the previous one). The fact that diffraction is related to
the unitarity corrections allows one to study the 1/Q2 be-
havior of shadowing in this model. In order to keep only
the leading-twist contribution (terms ∝ 1/Q2 in the cross
section) we ignore the higher-twist contribution of the S
component to the diffractive cross section3. The results
are given in Fig. 10. One can see that neglecting these
terms introduces only a small difference. The fact that
nuclear shadowing corrections are predominantly leading-

3 Concretely, we ignore the S component in (17) of [27], and
in (20) of [27] we set the exponential containing χS to 1

Fig. 10. Results for Q2 = 0.5 (upper plot) and 5 (lower plot)
GeV2 using Schwimmer unitarization for the ratio Pb/nucleon
versus x of the model without modifications (solid lines), with-
out the higher-twist contribution in the short-distance compo-
nent (dashed lines), and without the higher-twist contribution
in the short-distance component plus some modification in pa-
rameters (dotted lines) to check the sensibility of the results;
see text

twist is not unexpected, as the diffractive cross section
is also leading-twist for the relevant kinematical region
(indeed, in the model of [27] the S component diffrac-
tion is almost negligible for small Q2 and/or large M2).
This is also seen in the fact that the ratio of diffractive
to inclusive cross sections does not show any strong Q2-
dependence for large M2 [47]. Here a comment is in order:
in [27] a parameter s0 is introduced in x and β to control
the limit Q2 → 0, so that all the equations are written for
x̄ = x+s0/(W 2+Q2), β̄ = β+s0/(M2+Q2). These terms
could mimic higher-twist corrections. In Fig. 10 we check
that the effect of varying this parameter4 from the original
s0 = 0.79 GeV2 to s0 = 0.2 GeV2 is also very small. So,
we can conclude that the contribution from higher-twist
terms to the shadowing of F2 is small. In contrast, in [11] a
large higher-twist correction for the shadowing is claimed.
The approach in this reference is very similar to ours: the
authors also compute shadowing from the diffractive cross
section, but using the H1 parameterization [48]. The shad-
owing obtained in this way for Q2

0 = 4 GeV2 is then em-
ployed as initial condition for DGLAP evolution, taking
the shadowing for valence quarks from [19]. When evolved
downwards to Q2 = 3 GeV2 a disagreement is found with
experimental data on the ratio Ca over D. This disagree-
ment is attributed to higher-twist contributions.

4 And setting c = 0 in (27) of [27]
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Fig. 11. Diagram showing the contribution to particle pro-
duction in the central region in AB collisions

4 Multiplicity reduction
in nucleus–nucleus collisions

In this framework it is also possible to study the reduc-
tion of multiplicities in nucleus–nucleus collisions [49,28,
29]. We will denote the rapidity of the produced system in
the center of mass frame by y∗. Shadowing as a function
of the rapidity of the produced particle can be computed
taking into account the general relation with the diffrac-
tive variables:

y = ln
(

1
xP

)
= ln

( s

M2

)
. (18)

Then the factor for reduction of multiplicities at fixed
impact parameter b is [49,28,29]

RAB(b) =
∫

d2s RA(s)RB(b − s)
TAB(b)

. (19)

RA(B)(b) is given by the r.h.s. of (16) multiplied by
TA(B)(b) and with f(x, Q2) substituted by F (s, y∗) (see
below), and

TAB(b) =
∫

d2s TA(s)TB(b − s). (20)

Equation (19) takes into account the summation of
Schwimmer’s fan-like diagrams for the projectile and tar-
get, which are joined by a single pomeron whose cut gives
rise to the produced particle (Fig. 11). It follows from
AGK cancellation [25] that this is the only contribution of
this type (more complicated diagrams with lines joining
upper and lower parts of the diagram cancel). This pro-
vides the justification for the factorized expression (19),
which is true even if more general rescattering diagrams
are taken into account.

The reduction factor as a function of the rapidity of the
produced particles F (s, y∗), can be calculated in several
ways. The first one is using (12), but with the integration
limits inspired by the parton model for hard processes: for
projectile A (target B),

xA(B) =
mT√

s
e±y∗

, (21)

Fig. 12. Results of the model for the multiplicity reduction
factor versus impact parameter b at y∗ = 0, for AuAu colli-
sions at

√
s = 19, 130 and 200 GeV per nucleon, and for PbPb

collisions at
√

s = 5500 GeV per nucleon, in the parton model-
like realization (solid lines) and for [C = 0.31 fm2, ∆ = 0.13]
(dashed lines)

Fig. 13. Id. to Fig. 12 but for AuAu collisions at
√

s = 200 GeV
per nucleon and for PbPb collisions at

√
s = 5500 GeV per

nucleon, for y∗ = 1, 2 and 3

with y∗ > 0 for the projectile hemisphere and y∗ < 0
for the target one, and mT =

√
m2 + p2

T the transverse
mass of the produced particle. Substituting in the general
relation for M2

max, (7), we get
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Fig. 14. Results of the model for the multiplicity reduction
factor versus impact parameter b at y∗ = 0, for AuAu collisions
at

√
s = 200 GeV per nucleon, in the parton model-like real-

ization (upper plot) and for [C = 0.31 fm2, ∆ = 0.13] (lower
plot). In each plot, lines from bottom to top correspond to
m2

T = 0.16, 1, 2, 3, 4 and 5 GeV2

M2(A(B))
max = Q2

(
xPmax

xA(B)
− 1

)

= Q2
(

xPmax
√

s

mT
e∓y∗ − 1

)
, (22)

while M2
min remains fixed and equal to 0.08 GeV2, and

Q2 = m2
T.

On the other hand, we can also compute the reduction
factor from the formulas [28,29]

F (s, y∗) = 4π

∫ ymax

ymin

dy
1

σP(s)
dσPPP

dydt

∣∣∣∣
t=0

F 2
A(tmin), (23)

where σP(s) is the single pomeron exchange cross sec-
tion and dσPPP

dydt the triple pomeron cross section. Using
the standard triple pomeron formula for the latter, we get

1
σP(s)

dσPPP

dydt

∣∣∣∣
t=0

= C∆ exp (∆y), (24)

with C = gP
pp(0)rPPP(0)

4∆ , gP
pp(0) the pomeron–proton cou-

pling and rPPP(0) the triple pomeron coupling, both eval-
uated at t = 0. In this case, the same integration limits
used above correspond to

y
(A(B))
min = ln

(
s

M
2(A(B))
max

)
, (25)

with M
2(A(B))
max given by (22), and

y(A(B))
max =

1
2

ln
(

s

m2
T

)
∓ y∗. (26)

In the calculations we have used [C = 0.31 fm2, ∆ = 0.13]
taken from [50] (used in [28,29]). A value mT = 0.4 GeV
is employed by default (in [28,29] the nucleon mass mN

was used). The sensibility of our results to variations in
mT will be examined.

In Fig. 12 our results at y∗ = 0 are presented for AuAu
at RHIC energies and for PbPb collisions at the LHC,
versus impact parameter. Reductions of multiplicities at
b = 0 by factors ∼ 1/2 for RHIC and ∼ 1/3 for LHC are
found, with a clear increase of the suppression with in-
creasing energy. In Fig. 13 results are presented for AuAu
at RHIC and PbPb at LHC for different y∗. Finally, in
Fig. 14 the variation with mT of the results at y∗ = 0 for
AuAu at RHIC is studied. A reduction of the suppression
with increasing mT is seen, as expected. Let us make two
comments: First, our results for the reduction factors are
very similar to the ones estimated in [28,29]. It has been
shown in [28,29] that when these reduction factors are
used to correct the results of the dual parton model, one
obtains a good description of the RHIC data on multiplic-
ities and their evolution with centrality. Thus, our results
provide a detailed calculation of these reduction factors,
which confirms the estimations in [28,29].

Second, our results are important in studying particle
production in heavy ion collisions. In particular, the de-
pendence of the reduction factors on mT gives the varia-
tion of shadowing corrections with the pT of the produced
particle5.

5 Conclusions

In this paper, we have used the relation which arises from
reggeon calculus and the AGK rules, between the diffrac-
tive cross section measured in DIS on nucleons and the
first contribution (i.e. double scattering) to nuclear shad-
owing. The next contributions have been estimated using
two different methods for unitarization. In this way we
have obtained a description of nuclear shadowing, based
on the model of [27] for diffraction, which agrees with the
existing experimental data without any fitted parameter.
The model is designed for the region of x < 0.01 and
Q2 < 10 GeV2, i.e. small x and small or moderate Q2.

The same method has been applied in [10,11]. In [10],
a model for diffraction [50] has been used that takes into
account unitarization effects in an effective manner, so the
extrapolation to smaller x or larger W 2 is not so reliable as
in the full unitarization program followed in [27]; further-
more, the description of diffraction in the model we use
is substantially better due to the inclusion in the fits of
new, more precise experimental data. In [11], a model for
diffraction is used in order to obtain an initial condition for
DGLAP evolution at Q2

0 = 4 GeV2, so their leading-twist
description for nuclear shadowing is not valid at small Q2.

5 For reduction factors based on other mechanisms, see
[51,52]
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On the contrary, we develop a model valid for the full low
Q2 region which does not correspond to any definite twist
but contains contributions from all twist orders.

Nevertheless, it turns out that, as discussed at the
end of Sect. 3, the leading-twist contribution is the domi-
nant one in our model, which is in reasonable agreement
with the existing experimental data. Precise data on the
Q2-dependence of nuclear structure functions should dis-
entangle these two possibilities. The existing data from
NMC [40] can be well reproduced within the leading-twist
DGLAP evolution [19] with an appropriate set of initial
conditions.

An extension of our results using DGLAP evolution
for large values of Q2 is thus a natural continuation of our
work [41].

In this framework we have also obtained the factor for
multiplicity reduction in nucleus–nucleus collisions. This
factor reaches values ∼ 1/2 and ∼ 1/3 for central AuAu
and PbPb collisions at RHIC and LHC respectively. It is
therefore a very important ingredient for the computation
of particle production at these energies which should be
taken into account together with other possible effects.

Comparison among models shows differences of a fac-
tor 0.6 for the ratio of structure functions Pb/nucleon at
x = 10−5 and Q2 = 3 GeV2. These differences have a large
impact on the computation of particle production in nu-
clear collisions at the energies of RHIC and LHC. They
should be testable in future lepton–ion colliders [46].

To conclude, the method which we have followed of-
fers a natural link between the measurements of nucleon
diffractive structure functions and nuclear shadowing, and
between the latter and the suppression of particle produc-
tion in nuclear collisions. In this way the study of low x
physics at HERA is linked to that of nuclear structure
functions at future lepton–ion colliders and with heavy
ion physics at RHIC and LHC [15].
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